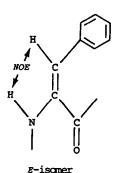
E/Z-Configurational assignment of dehydropeptides: differential noe enhancement between the vinyl and amide protons of an α,β -dehydro amino acid derivative

Yasuyuki Shimohigashi¹, Theodore J. Nitz and Charles H. Stammer

Department of Chemistry, University of Georgia, Athens, GA 30602 USA

Toshiro Inubushi


National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases

National Institutes of Health, Bethesda, MD 20205 USA

Summary: The nuclear Overhauser enhancement difference technique applied to vinyl and amide protons of an α,β -dehydroamino acid derivative allows the assignment of the E or Z configuration; E-form, NOE = 26-37% and Z-form, NOE = 0%.

The incorporation of α,β -dehydroamino acids into peptide hormones has been recognized as a useful structural variation for the elucidation of dynamic structure-activity relationships. The restricted orientation of the β -substituent on the double bond is a probe for the specific interaction of this group with the receptors as demonstrated for D-Ala , Δ^2 Phe -enkephalins. Thus, it is important to the synthesis of dehydropeptides to know the configuration of the dehydro unit. Some empirical rules for determining E/Z-configurations by NMR spectroscopy have been reported in recent years: (i) a comparison of chemical shifts of the vinyl proton when the spectrum is measured in CDCl3 and trifluoroacetic acid; (ii) a comparison of the vinyl proton chemical shift before and after N-methylation; (iii) a difference in the vicinal coupling between the carbonyl carbon and the vinyl proton.

Using a Nicolet NMC-500 NMR spectrometer operated at 500.09 MHz for 1 H-NMR spectroscopy, we have measured the nuclear Overhauser effect (NOE) 8,9 on the vinyl and amide protons of Cbz- $^{\Delta}$ Phe-OEt, in order to discriminate the E- and Z-isomers (Fig. 1). The syntheses and conformational assignments by X-ray and 13 C-NMR have been reported previously for each pure isomer. 6

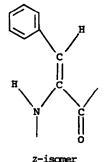


Fig. 1. The structures of dehydro unit of the Δ Phe residues with the E- and Z-configurations.



Fig. 2. 500 MHz H-NMR spectra of Cbz-Δ^EPhe-OEt: (A) NOE difference spectrum with irradiation of the amide proton (7.017 ppm) and (B) spectrum without irradiations.

The H-{H} NOE difference spectrum in CDCl3 was obtained by irradiation of either the vinyl or amide proton signal and was gated during a waiting time of 5 sec prior to each scan. Fig. 2 shows the NOE difference spectrum of E-isomer, $Cbz-\Delta^E$ Phe-OEt, after irradiation of the amide proton (7.017 ppm) (Fig. 2A) together with a spectrum without NOE (Fig. 2B). The amide proton was assigned by H-D exchange using ${
m CD_2OD}$, and observed enhancements as negative NOEs were 37% for the vinyl proton signal (7.712 ppm) and 5.5% for the phenyl proton signals of the Cbz group (7.255 ppm). By irradiation of the vinyl proton, the enhancements were 26% for the amide proton signal and 4.6% for the signals of Δ^{E} Phe-phenyl protons (7.393 ppm). Thus, the observation of large negative NOEs indicates that the vinyl proton is very close in space to the amide proton in the Δ^{E} Phe residue, but in the Z-isomer, no enhancement of the vinyl proton signal (7.514 ppm in CDCl2) was observed by irradiation of the amide proton (6.304 ppm). The large effect on the aromatic envelope, which loses 28% of signal intensity, suggests a very close spacing between the amide proton and the phenyl ring (Fig. 1).

The present study clearly shows that a NOE difference spectroscopy is an efficient and direct method for the E/Z-configurational assignment of α,β -dehydroamino acid residues.

References

- 1. Present address: NIH, NICHD, Bethesda, MD 20205 USA
- C. H. Stammer, in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, (B. Weinstein, ed.) Vol. 6, Marcel Dekker, New York, pp. 33 (1982).
- Y. Shimohigashi, T. Costa, and C. H. Stammer, FEBS Lett., 133, 269 (1981).
- 4. Y. Shimohigashi, M. L. English, C. H. Stammer, and T. Costa, Biochem. Biophys. Res. Commun., 104, 583 (1982).
- 5. A. Srinivasan, K. D. Richards, and R. K. Olsen, Tetrahedron Lett., 891 (1976).
- 6. T. J. Nitz, E. M. Holt, B. Rubin, and C. H. Stammer, J. Org. Chem., 46, 2667 (1981).
- R. Vleggaar, and P. L. Wessels, J. Chem. Soc., Chem. Commun., 160 (1980).
 J. H. Noggle, and R. E. Schirmer, The Nuclear Overhauser Effect, Chemical Applications, Academic Press, New York (1971).
- 9. L. Duhamel, P. Duhamel, and S. Combrisson, Tetrahedron Lett., 3603 (1972).

(Received in USA 12 May 1982)